

In Vitro Toxicology

Mitochondrial Oxidative Stress

Background Information

'ROS trafficking between mitochondria could constitute a positive-feedback mechanism resulting in an elevated production of ROS that could be propagated throughout the cell and may cause perceptible mitochondrial and cellular injury.'

¹Zorov DB *et al.* (2014) *Physiol Rev* **94(3)**; 909-950

- Mitochondria consume the majority of cellular oxygen and regulate redoxsignalling¹.
- Toxic drugs can induce mitochondrial reactive oxygen species (mROS) causing mitochondrial/cellular damage which has been linked to the pathology of many diseases².
- The Cyprotex mitochondrial oxidative stress assay detects selective mROS production caused by the toxicity of novel compounds.

Protocol

Cell Line

HepG2 cell line; other cell types on request

Analysis Platform

Cellomics ArrayScan® CX7, XTI and VTI (Thermo Scientific)

Test Compound Concentrations

8 point dose response curve with top concentration based on 100x $C_{\rm max}$ or solubility limit*

Compound Requirements

 $50~\mu L$ of a solution to achieve 100x C $_{\rm max}$ (200x top concentration to maintain 0.5% DMSO) or equivalent amount in solid compound

Number of Replicates

3 replicates per concentration*

Time Points 24 hour*

Quality Controls

Negative control: 0.5% DMSO (vehicle) Positive controls: 2 known mROS-inducing compounds

Data Delivery

Minimum effective concentration (MEC) and AC_{50} value for each measured parameter, mitochondrial oxidative stress (mROS), and cell health (cell count, nuclear size, DNA structure and cellular ATP)

*Other options available on request

Figure 1

Representative HCS images of four mROS inducing test compounds alongside vehicle control; nuclei (blue), mROS (green).

	Nuclei	mROS	Combined
Antimycin A 0.1 µM			
СССР 0.04 µМ			
Chlorpromazine 40 µM			
Rotenone 10 µM			
DMSO			

HepG2 cells were plated on tissue culture treated black walled clear bottomed polystyrene plates. The cells were dosed with test compound at a range of concentrations.

At the end of the incubation period (24 hours), the cells were labelled with Hoechst (nuclei) and mitoSox[®] (mROS) then imaged using an automated fluorescent cellular imager, CellInsight CX7 High-Content Screening (HCS) Platform (Thermo Scientific Cellomics).

Figure 2

Representative dose-response curves for rotenone and chlorpromazine displaying increased mROS formation.

References

¹ Zorov DB et al., (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol Rev 94(3); 909-950

² Ježek P et al., (2020) Redox Signaling from Mitochondria: Signal Propagation and its Targets. Biomolecules 10(1); 93