

In vitro ADME

Hepatic Uptake Assay

Background Information

Experiences of sub-optimal drug exposure due to drug transporter interplay have supported incorporation of studies aimed at understanding the interactions between compounds and drug transporters much earlier in drug discovery.'

¹Riley RJ, Foley SA, Barton P, Soars MG & Williamson B (2016) *Expert Opin Drug Metab Toxicol* **12(2)**; 201-216

- Intrinsic clearance can be influenced by several processes including hepatic uptake, efflux, biliary excretion and drug metabolism².
- The predominant transporters involved in human hepatic uptake include OATPs, NTCP, OCTs and OATs³. These transporters determine intracellular concentrations which can influence clearance as well as potential DDI and hepatotoxicity.
- Inter-individual variability in hepatic uptake is also likely for substrates of hepatic uptake transporters which exhibit polymorphisms.
- Through its parent company, Evotec, Cyprotex are able to offer a hepatic uptake assay which utilises the media loss⁴ approach, and determines the hepatic uptake intrinsic clearance.

Protocol

Cells

Cryopreserved rat hepatocytes

Test Article Concentration1 μM (different concentrations available)

Method Media loss

Incubation Time 0, 0.17, 0.5, 1, 1.5, 2, 5, 10, 20, 30, 60 min

Replicates n=2

Test Article Requirements 50 µL of 10 mM solution

Analysis Method LC-MS/MS quantification

Assay Controls Atorvastatin (positive control for uptake) Dextromethorphan (negative control for uptake and positive control for CYP activity)

Data Delivery Uptake intrinsic clearance (CL_{int,uptake}) (μL/min/x10⁶ cells)

Figure 1

Relationship between rat uptake intrinsic clearance (using Evotec's hepatic uptake assay) with values reported in the literature^{2,5,6,7,8,9} for a set of 14 compounds.

In addition to robust human *in vitro* data, confidence in understanding and predicting preclinical species *in vivo* clearance is essential before extrapolation to human *in vivo* clearance for NCEs¹⁰.

To gain insight and understanding into how transporter mechanisms that may contribute to clearance *in vivo*, early data are often generated in preclinical species such as the rat. Further, the human transporters OATP1B1 and OATP1B3 are orthologous to the rodent specific transporter Oatp1b2¹¹.

Figure 2

Correlation of rat *in vitro* and *in vivo* intrinsic clearance for a set of 17 test compounds determined using A). a standard suspension rat hepatocyte stability assay and B). the media loss assay.

The data generated by Evotec are in broad agreement with those reported in the literature from a range of labs as illustrated in Figure 1. Further, in contrast to the standard suspension hepatocyte stability model (Figure 2A), the scaled *in vitro* rat uptake intrinsic clearance data from the Evotec model demonstrates a strong correlation with *in vivo* rat intrinsic clearance (Figure 2B) demonstrating the advantages of the media loss approach.

References

- ¹ Riley RJ et al., (2016) Expert Opin Drug Metab Toxicol 12(2); 201-216
- ² Maeda K and Sugiyama Y (2013) In Transporters in Drug Development Discovery
- Optimization, Clinical Study and Regulation. Ed. Sugiyama Y and Steffansen B. 121-154
- ³ Annaert P et al., (2007) In Drug Transporters: Molecular Characterization and Role in Drug
- Disposition. Ed. You G and Morris ME. 359-410
- ⁴ Soars MG et al., (2007) Drug Metab Dispos **35(6)**; 859-865
- ⁵ Ishiguro N et al., (2006) Drug Metab Dispos 34(7); 1109-1115
- ⁶ Paine SW et al., (2008) Drug Metab Dispos **36(7)**; 1365-1374
- ⁷ Gardiner P & Paine SW (2011) Drug Metab Dispos **39(10)**; 1930-1938
- ⁸ Ménochet K et al., (2012) Drug Metab Dispos **40(9)**; 1744-1756
- ⁹ Ménochet K *et al.*, (2012) *J Pharmacol Exp Ther* **341(1)**; 2-15
 ¹⁰ Grime K and Riley RJ (2006) *Curr Drug Metab* **7**; 251-264
- ¹¹ Hagenbuch B and Meier PJ (2003) *Biochim Biophys Acta* **1609(1)**; 1-18