

### In vitro ADME & PK

# Cytochrome P450 Time Dependent Inhibition (k<sub>inact</sub>/K<sub>l</sub>)

## Background Information



'Metabolic drug-drug interactions resulting from TDI can display a delayed onset due to the time dependence in inhibition and can persist even after the inhibitor has been eliminated because enzymatic activity is only restored by de novo protein synthesis.'

<sup>2</sup>Grimm SW, Einolf HJ, Hall SD, He K, Lim H-K, John Ling, K-H, Lu C, Nomeir AA, Seibert E, Skordos KW, Tonn GR, Horn RV, Wang RW, Wong YN, Yang TJ and Obach RS. (2009) *Drug Metab Dispos* **37**; 1355-1370

- Time dependent inhibition of cytochrome P450, often caused by an irreversible or quasi-irreversible interaction, can lead to clinically relevant drug-drug interactions or non-linear pharmacokinetics of a drug. In addition, these interactions are typically a consequence of reactive metabolite formation which is also associated with toxicity via covalent binding to cellular macromolecules<sup>1</sup>.
- The FDA guidance for drug interactions (2020)<sup>3</sup> and the EMA guideline on the investigation of drug interactions (adopted 2012)<sup>8</sup> recommend evaluating time dependent inhibition for investigational drugs.
- Characterisation of the k<sub>inact</sub> (maximal inactivation) and K<sub>1</sub> (concentration at 50% k<sub>nact</sub>) parameters is frequently performed during drug development to evaluate risk of time dependent inhibition and decide if a clinical interaction study is required.
- Cyprotex's k<sub>inact</sub>/K<sub>1</sub> assay evaluates the inactivation kinetics of time dependent inhibition at 5 inhibitor concentrations and 7 pre-incubation times.

#### Protocol

#### Substrates and CYP Isoforms

Phenacetin (CYP1A2), bupropion (CYP2B6), paclitaxel (CYP2C8), diclofenac (CYP2C9), S-mephenytoin (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A4) (others available on request)

#### Test System

Human liver microsomes

**Pre-incubation Times** 7 Pre-incubation times (including 0 min)

**Test Article Concentrations** 5 Concentrations plus vehicle control

Number of Replicates

Analysis Method LC-MS/MS

Data Delivery

K

#### **Related Services**

- Cytochrome P450 Time Dependent Inhibition (Single Point)
- Cytochrome P450 Time Dependent Inhibition (IC<sub>50</sub> Shift)



#### Figure 1

Inactivation plot (natural logarithm of the corrected % remaining activity versus pre-incubation time) for the CYP3A4 time dependent inhibitor, diltiazem, using midazolam as the probe substrate for CYP3A4.

Data illustrated are the mean of duplicate incubations.

#### Figure 2

Non-linear regression analysis of the negative slopes versus inhibitor concentration (in the pre-incubation) performed to obtain  $k_{\rm inact}$  and  $K_{\rm i}$  values using the data illustrated in Figure 1.

#### Table 1

Experimental conditions selected for 4 known CYP3A4 time dependent inhibitors and comparison of the inactivation parameters, K<sub>1</sub>, k<sub>inact</sub> and k<sub>inact</sub>/K<sub>1</sub> ratio with published literature values. Parameters (Cyprotex values) are derived from the mean of duplicate incubations. The table illustrates that data generated at Cyprotex compares well with literature data.

| Compound     | Experimentally Determined Values at Cyprotex |                             |                               |                     |                                         |                                                     | Literature Values   |                                         |                                         |
|--------------|----------------------------------------------|-----------------------------|-------------------------------|---------------------|-----------------------------------------|-----------------------------------------------------|---------------------|-----------------------------------------|-----------------------------------------|
|              | Dilution factor                              | Concentration<br>range (µM) | Pre-incubation Times<br>(min) | Κ <sub>ι</sub> (μΜ) | k <sub>inact</sub> (min <sup>-1</sup> ) | k <sub>inact</sub> /K <sub>i</sub><br>(ml/min/µmol) | Κ <sub>ι</sub> (μΜ) | k <sub>inact</sub> (min <sup>-1</sup> ) | k <sub>inact</sub> /K₁<br>(ml/min/µmol) |
| Diltiazem    | 1:10                                         | 0.5-50                      | 0, 5, 10, 15, 20, 25, 30      | 8.8                 | 0.0329                                  | 3.74                                                | 4.5                 | 0.012                                   | 2.674                                   |
| Mibefradil   | 1:20                                         | 0.2-20                      | 0, 1, 2.5, 5, 10, 15, 20      | 4.8                 | 0.312                                   | 65.0                                                | 2.6                 | 0.4                                     | <b>17</b> 4 <sup>5</sup>                |
| Mifepristone | 1:10                                         | 0.2-20                      | 0, 5, 10, 15, 20, 25, 30      | 1.6                 | 0.0700                                  | 43.8                                                | 1.3                 | 0.061                                   | 47 <sup>6</sup>                         |
| Verapamil    | 1:10                                         | 0.3-30                      | 0, 5, 10, 15, 20, 25, 30      | 3.9                 | 0.0619                                  | 15.9                                                | 1.8                 | 0.043                                   | 11.57                                   |

#### References

- <sup>1</sup> Kalgutkar AS et al, (2007) Curr Drug Metab 8; 407-447.
- <sup>2</sup> Grimm SW et al, (2009) Drug Metab Dispos **37**; 1355-1370.
- <sup>3</sup> FDA Guidance for Industry In Vitro Drug Interaction Studies Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions (January 2020)
- <sup>4</sup> Obach RS et al. (2007) Drug Metab Dispos **35 (2)**; 246-255.
- <sup>5</sup> Prueksaritanont T *et al*, (1999) *Br J Clin Pharmacol* **47**; 291-298.
- <sup>6</sup> Berry LM et al, (2008) Drug Metab Lett **2**; 51-59.
- 7 Perloff ES et al, (2009) Xenobiotica 39 (2); 99-112.

