

In vitro Toxicology

eCiphr®Neuro: Assessment of Neuronal Activity Using Microelectrode Array

Background Information

The unique capabilities of MEAs to provide functional measurements of network activity, including spontaneous activity, evoked activity, and responses to pharmacological challenges, therefore offers an advantage over other potential screening approaches that rely on biochemical or structural endpoints.'

¹Robinette BL *et al.*, (2011) *Front Neuroeng* **4**; 1-9

- The eCiphr®Neuro assay uses primary cultures of rat cortical neurons.
- Cyprotex's neuronal assay uses high throughput microelectrode array (MEA) technology to monitor electrophysiological activity.
- Neurons grown on microelectrode arrays recapitulate many features of neurons *in vivo*, including spontaneous activity (spiking and bursting), plasticity, organisation and responsiveness to a wide range of neurotransmitters and pharmacological agonists/antagonists¹.
- This technology provides a unique *in vitro* system for preclinical drug discovery, neurotoxicity assessment and disease modelling.

Protocol

Cell Type Primary rat cortical neurons

Analysis Platform Maestro 48-well MEA system (Axion BioSystems)

Test Article Concentrations 4 concentrations in triplicate (dependent on customer requirements)

Quality Controls

Negative control: 0.2% DMSO (vehicle) Positive controls: picrotoxin and domoic acid (at single concentration)

Data Delivery

Firing rate (spikes/second) Burst rate (spikes/second) Number of spikes in burst Percent of isolated spikes Coefficient of variation (CV) of the inter-spike intervals (ISI) Burst duration Normalised IQR (inter-quartile range) burst duration Interburst interval Mean ISI-distance (measure of synchrony) Normalised Median Absolute Deviation (MAD) burst spike number Median ISI/Mean ISI

In vitro networks of neurons are spontaneously active and express patterns of electrical activity as part of their normal function².

Figure 1

Change in spontaneous spike activity in rat cortical neurons after drug treatment.

Firing rate (spikes/sec) Median burst rate (bursts/sec Median number of spikes in bu Percent isolated spikes Normalised IQR burst duration Median burst duration(s)
Mean interburst interval(s) Mean of ISI-distance Normalised MAD burst spike number Median/mean ISI

The spontaneous spike activity is recorded in rat cortical neurons using Axion Biosystems microelectrode array Maestro platform. The spike train data is extracted from baseline and post dose measurements and converted to numerical values using a custom Matlab script to characterise firing and burst organisation. The negative control 0.2% DMSO (vehicle) caused no change in activity, burst characteristics or synchrony. A distinct pattern of change affecting spike activity, burst characteristics and synchrony is observed with GABA, antagonists picrotoxin and gabazine. A different but significant pattern of activity can be seen with other proconvulsant toxins such as strychnine, a glycine receptor antagonist. Meanwhile, complete abolishment of spike activity is observed with the neurotoxin, domoic acid.

Figure 2

Raster plots of spike activity in five individual electrodes before and after 1 hr treatment with picrotoxin.

		Rasters		
		B2_33		
100	450	B2_34	500	550
\$00	450	B2_41	500	550
100	450	B2_42	500	550
100	450	B2_43	500	550
100	450		500	550

Five representative electrodes out of the 16 electrodes in a well are shown over a 150 sec time span. The recorded spike activity of rat cortical neurons is represented by the raster plots which illustrate the structure of typical baseline spike activity for a well compared to its structure following a 10µM dose with the GABA, antagonist picrotoxin. The qualitative visual differences in the dynamics of the spike train are quantified through computation of the spike train features as seen in Figure 1.

Table 1

Comparison of eCiphr®Neuro data with neurological effects observed in vivo.

Compound	Chemical class	Neurological effect in vivo	eCiphr [®] Neuro prediction
0.2% DMSO	Vehicle	None	No effect
Gabazine	GABA _A antagonist	Seizurogenic ²	Seizurogenic
Bicuculline	GABA _A antagonist	Seizurogenic ²	Seizurogenic
Picrotoxin	GABA _A antagonist	Seizurogenic ³	Seizurogenic
Pentylenetetrazole (PTZ)	GABA _A antagonist	Seizurogenic ⁴	Seizurogenic
Tutin	GABA _A antagonist	Seizurogenic ⁵	Seizurogenic
GABA	GABA _A agonist	Decreases neural activity ⁶	Decreased activity
Tetrodotoxin	Sodium channel blocker	Neurotoxic ⁷	Neurotoxic
Aminopyridine	Potassium channel blocker	Seizurogenic ⁸	Seizurogenic
Domoic Acid	Glutamate signalling	Neurotoxic ⁹	Neurotoxic
L-Glutamate	Glutamate agonist	Increase neural activity ¹⁰	Increased activity
Strychnine	Glycine receptor antagonist	Seizurogenic ¹¹	Seizurogenic
Acetaminophen	NSAID	None	No effect
Ibuprofen	NSAID	None	No effect

A number of compounds with a range of neurological effects were tested in the eCiphr®Neuro assay using rat cortical neurons. A good correlation was seen with drugs tested in this in vitro assay with their known in vivo effects. Different patterns of change affecting spike activity, burst characteristics and synchrony are observed in GABA, antagonists and other proconvulsants as illustrated in Figure 1.

References

- ¹ Robinette BL et al, (2011) Front Neuroeng 4; Article 1
- ² Margineau DG and Wülfert E (1997) Br J Pharmacol 122; 1146-1150
- ³ Mackenzie L et al, (2002) Clin Neurophysiol 113(4); 586-596
- ⁴ Ono J et al, (1990) Funct Neurol 5(4); 345-352
- ⁵ Fuentealba J et al, (2011) Neuropharmacology **60**; 453-459
- 6 Levy LM and Degnan AJ, (2013) Am J Neuroradiol 34(2); 259-65
- ⁷ Hwang DF and Noguchi T (2007) Adv Food Nutr Res, 52; 141-236 ⁸ Peña E and Tapia R (2000) Neuroscience **101(3)**: 547-561
- ⁹ Pulido OM (2008) *Mar Drugs* **6(2)**; 180-219 ¹⁰ Hankir MK et al, (2012) Neuroimage **59(2)**; 968-978
- ¹¹ Kehne JH et al, (1992) Br J Pharmacol 106(4); 910-916