

In vitro Toxicology

3D Neurotoxicity Assay: Human brain microtissues.

Background Information

U-19409-32 CP Incl E6/811	H-19489-80 CP Inc4 E5/812
4-19489-31 CP Inc1 E4/60	U-19489-79 CP Inc4 E4/810
U-19489-30 CP Inc1 E2/87	U-19489-78 CP Inc4 E2/88
U-19469-29 (P Inc1 E5/A5	4-19489-77 CP Inc4 E5/85
U-19459-26 CP Inc1 E3/R3	U-19489-76 CP Inc4 E3/84
U-19419-27 CP Incl E1/R1	U-19489-75 CP Inc4 E1/B2
U-19489-26 Inel Out C12	U-19489-74 Inc4 Out C12
U-19409-25 25yr Incl C11	U-19409-73 25µ7 Inc4 C11
U-19469-24 10µH Incl C9	U-19469-72 10µM Inc4 C9
U-19409-23 2.5µH Incl C7	U-19419-71 2.5µH Inc4 C7
W-19409-22 IpH Inci C5	U-19489-70 1µR Inc4 C5

'HCA can be used to precisely distinguish between neuronspecific toxicity and general cytotoxicity while simultaneously enabling inclusion of other parameters to detect novel neurotoxic effects of chemicals.'

¹ Wilson MS *et al.*, (2014) *NeuroToxicology* **42**; 33-48

- The prevalence of adverse neurotoxic reactions of the brain in response to drugs or environmental hazards continues to prompt the development of novel cellbased assays for accurate neurotoxicity prediction¹.
- In vitro three-dimentional (3D) cell cultures allow better recapitulation of the complex in vivo microenvironment than traditional 2D monolayer models².
- 3D models also permit long-term compound exposures allowing a closer replication of clinical dosing strategies³.
- Mitochondrial dysfunction and calcium homeostasis⁴ are commonly observed responses to toxic compounds and are implicated in neurotoxicity.
- Confocal high content imaging (HCI) allows the simultaneous detection of multiple cell health parameters within a 3D microtissue structure in combination with a measure of cellular ATP content.

Protocol

Microtissue

Included pluripotent stem cell (iPSC) derived neurocytes and astrocytes.

Analysis Platform

Confocal Cellomics ArrayScan® XTI or CX7 (Thermo Scientific).

Test Compound Concentrations

8 point dose response curve with top concentration based on $100x C_{max}$ or solubility limit. 3 replicates per concentration.*

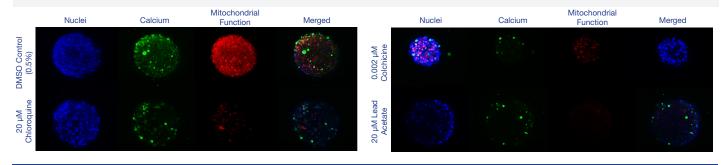
Compound Requirements

Maximum (dependent upon number of repeat doses) 150 μL of a DMSO* solution to achieve 200x top concentration maintained at 0.5% DMSO or equivalent amount in solid compound.

Time Points

Any time point up to 14 days.

Quality Controls Negative control: 0.5% DMSO (vehicle) Positive controls: chloroquine and colchicine


Data Delivery

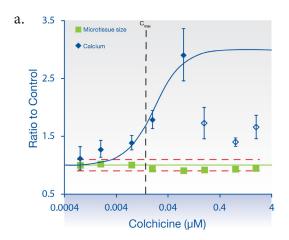
Minimum effective concentration (MEC) and AC_{50} value for each measured parameter; microtissue count, microtissue size, DNA structure (DNA), calcium homeostasis (Ca^{2+}) mitochondrial mass (Mito Mass), mitochondrial membrane potential (MMP) and cellular ATP content (ATP)*.

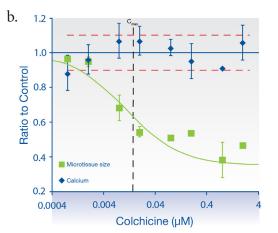
*Other options available on request

Figure 1

Representative 3D confocal high content screening (HCS) images of brain microtissues labelled with Hoechst (Blue; DNA structure and microtissue size), Fluo-4 AM (Green; calcium homeostasis) and TMRE (Red; mitochondrial function) following exposure to either control DMSO or effective concentrations of known neurotoxins chloroquine, colchicine and lead acetate.

Table 1


Neurotoxicity prediction of 10 reference compounds categorised according to literature data and normalized to total plasma C_{max} in immature and matured brain microtissues.


				72 hour (AC ₅₀)		336 hour (AC₅₀)	
Name	Expected outcome	Top conc (µM)	С _{тах} (µМ)	Immature brain MT	Matured brain MT	Immature brain MT	Matured brain MT
Amoxicillin	Non-toxic	100	0.87	43.6	NR	NR	NR
Acetaminophen	Non-neurotoxic	15000	130	8790	13800		
Acrylamide		10	0.029	4.26	NR		NR
Chloroquine disphosphate		200	1.62	52.5	28.2		13.1
Colchicine		2	0.015	0.0138			
Lead acetate		200	1.3	NR	NR	NR	
Lidocaine		3000	25.6	NR	NR		
Paclitaxel		200	2	45.4			
Tamoxifen		10	0.083	NR	9.45		
Vinblastine sulfate		20	0.24	0.0429			
Correct prediction within 100x C _{max} or solubility limit		50%	60%	80%	80%		

Immature (3 day old) or matured (14 day old) brain microtissues were exposed to test compound for 72 or 336 hrs. During the 336 hr period re-dosing occurred on 3 occasions (72, 168 and 210 hr). At either 72 or 336 hr the cell model was analysed using the confocal mode of Cellomics ArrayScan® XTI or CX7 (Thermo Scientific) following incorporation of fluorescent dyes. Cellular ATP content was subsequently measured using CellTiterGlo® (Promega).

Figure 2

Graphical representation of early calcium dyshomeostasis followed by a decrease in microtissue size in response to colchicine following (a) 72 hours and (b) 336 hours in brain microtissues.

Utilising the 3D neurotoxicity assay approach 80% of reference compound toxicities were correctly predicted within a 100x C_{max} cut off with a 336 hour exposure period in both immature and matured brain microtissues. Following the acute time point of 72 hour compound exposure, only 50% and 60% of compounds were correctly predicted within a 100x C_{max} cut off in the immature and matured brain microtissues, respectively.

An *in vitro* 3D brain microtissue model with improved longevity and better recapitulation of *in vivo* cellular physiology in combination with an automated multiparametric HCI and a cytotoxicity assay presents a viable screening strategy for the accurate *in vivo* relevant detection of novel therapeutics with neurotoxicity potential early in drug development.

References

¹ Wilson MS et al., (2014) Multiparametric high content analysis for assessment of neurotoxicity in differentiated neuronal cell lines and human embryonic stem cell-derived neurons. Neurotoxicology 42; 33-48

- ² Anderl JL et al., (2009) A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity. J Vis Exp 27; e1173
- ³ Pamies D et al., (2017) A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX 34(3); 362-376
- ⁴ Guo GW & Liang YX (2001) Aluminium-induced apoptosis in cultured astrocytes and its effect on calcium homeostasis. Brain Res 888; 221-226